【中文版】

Introduction

MFP language introduction

MFP functions

all functions

integer operation

logic functions

statistic and stochastic

trigononmetric functions

exponential functions

complex number

system functions

array or matrix

graphic functions

expression and calculus

string functions

hyperbolic trigononmetric

sorting functions

polynomial

signal processing

file operation

time and date

graphic display

multimedia functions

data structure

data interchange format

platform and hardware

parallel computing

RTC multimedia

reflection

MFP compiling

others

deploy user functions

call MFP in your app

build Android APK

game programming

chart plotting

MFP math analysis

MFP file procession

number string and array

time date and system

Introduction of SCP

Scientific Calculator Plus Help : signal processing functions

Function name Function info
conv

::mfp::sig_proc::conv(2) :

conv(input_a, inputb) returns convolution of input_a and input_b. input_a and input_b can either be two 1-D lists or two 2-D arrays. So far conv function only support 1-D and 2-D convolution. For example,

conv([4,8,2,9],[5,3,8,9,6,7,8]) = [20, 52, 66, 151, 139, 166, 181, 132, 79, 72]

conv([[4,8,2,9],[8,6,7,9],[2,2,8,-4]],[[-5,i,7],[0.6,8,4]]) = [[-20, -40 + 4 * i, 18 + 8 * i, 11 + 2 * i, 14 + 9 * i, 63], [-37.6, 6.8 + 8 * i, 102.2 + 6 * i, 50.4 + 7 * i, 129 + 9 * i, 99], [-5.2, 57.6 + 2 * i, 58.2 + 2 * i, 119.4 + 8 * i, 156 - 4 * i, 8], [1.2, 17.2, 28.8, 69.6, 0, -16]]

fft

::mfp::sig_proc::fft(1...) :

Function FFT(a, ...) returns fast fourier transform of a series of values, note that the number of values in the series should always be 2 to a positive integer. If a is a list of real or complex numbers, this function should only have one parameter and return fast fourier transform of a[0], a[1], ... a[N-1] where N is the number of values in a. If a is a single value (real or complex), this function should have at least two parameters and return fast fourier transform of a, optional_params[0], optional_params[1], ..., optional_params[number_of_optional_params - 1]. The returned value is always an array.

Examples of this function:

FFT(1, 2, 3, 4) returns [10, -2 + 2i, -2, -2 - 2i];

FFT([1, 2, 3, 4]) also returns [10, -2 + 2i, -2, -2 - 2i].

ifft

::mfp::sig_proc::ifft(1...) :

Function IFFT(a, ...) returns inverse fast fourier transform of a series of values, note that the number of values in the series should always be 2 to a positive integer. If a is a list of real or complex numbers, this function should only have one parameter and return inverse fast fourier transform of a[0], a[1], ... a[N-1] where N is the number of values in a. If a is a single value (real or complex), this function should have at least two parameters and return inverse fast fourier transform of a, optional_params[0], optional_params[1], ..., optional_params[number_of_optional_params - 1]. The returned value is always an array.

Examples of this function:

IFFT(10, -2 + 2i, -2, -2 - 2i) returns [1, 2, 3, 4];

IFFT([10, -2 + 2i, -2, -2 - 2i]) returns [1, 2, 3, 4];